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1 Scope of the Chapter

This chapter is concerned with basic linear algebra routines which perform elementary algebraic
operations involving scalars, vectors and matrices.

2 Background to the Problems

A number of the routines in this chapter meet the specification of the Basic Linear Algebra Subprograms
(BLAS) as described in Lawson et al. [7], Dodson et al. [2], Dongarra et al. [4] and [5]. The first reference
describes a set of routines concerned with operations on scalars and vectors: these will be referred to
here as the Level-0 and the Level-1 BLAS; the second reference describes a set of routines concerned
with operations on sparse vectors: these will be referred to here as the Level-1 Sparse BLAS; the third
reference describes a set of routines concerned with matrix-vector operations: these will be referred to here
as the Level-2 BLAS; and the fourth reference describes a set of routines concerned with matrix-matrix
operations: these will be referred to here as the Level-3 BLAS.

More generally we refer to the scalar routines in the chapter as Level-0 routines, to the vector routines as
Level-1 routines, to the matrix-vector and matrix routines as Level-2 routines, and to the matrix-matrix
routines as Level-3 routines. The terminology reflects the number of operations involved. For example,
a Level-2 routine involves O(n?) operations for an n x n matrix.

Table 1 indicates the naming scheme for the routines in this chapter. The heading BLAS in the table
indicates that routines in that category meet the specification of the BLAS, the heading ‘mixed type’ is
for routines where a mixture of data types is involved, such as a routine that returns the real Euclidean
length of a complex vector. In future marks of the Library, routines may be included in categories that
are currently empty and further categories may be introduced.

Level-0 Level-1 Level-2 Level-3
integer F06 routine - FO6D_F - -
‘real’  BLAS routine FO6A_F FOGE_F FO6P_F FO6Y_F
‘real’ FO06 routine FO6B_F FO6F_F F06Q-F -
FO6R_F
‘complex’ BLAS routine - FO6G_F FO6S_F FO06Z_F
‘complex’ F06 routine FO6C_F FO6H_F FO6T_F
FO6U_F
‘mixed type’ BLAS routine - F06J_F - -
‘mixed type’ FO06 routine - FO6K_F FO6V_F -
Table 1

The routines in this chapter do not have full routine documents, but instead are covered by some relevant
background material, in Section 2.2, together with general descriptions, in Section 4, sufficient to enable
their use. Descriptions of the individual routines are included in the NAG online documentation. As
this chapter is concerned only with basic linear algebra operations, the routines will not normally be
required by the general user. The functionality of each routine is indicated in Section 4 so that those
users requiring these routines to build specialist linear algebra modules can determine which routines are
of interest.

2.1 The Use of BLAS Names

Many of the routines in other chapters of the Library call the routines in this chapter, and in particular
a number of the BLAS are called. These routines are usually called by the BLAS name and so, for
correct operation of the Library, it is essential that you do not attempt to link your own versions of these
routines. If you are in any doubt about how to avoid this, please consult your computer centre or the
NAG Response Centre.

The BLAS names are used in order to make use of efficient implementations of the routines when these
exist. Such implementations are stringently tested before being used, to ensure that they correctly meet
the specification of the BLAS, and that they return the desired accuracy (see, for example, Dodson et al.
[2], Dongarra et al. [4] and [5]).
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2.2 Background Information

Most of the routines in this chapter implement straightforward scalar, vector and matrix operations that
need no further explanation beyond a statement of the purpose of the routine. In this section we give some
additional background information to those few cases where additional explanation may be necessary. A
sub-section is devoted to each topic.

2.2.1 Real plane rotations

There are a number of routines in the chapter concerned with setting up and applying plane rotations.
This section discusses the real case and the next section looks at the complex case. For further background
information see Golub and Van Loan [6].

A plane rotation matrix for the (¢, j) plane, R;;, is an orthogonal matrix that is different from the unit
matrix only in the elements 7, r

r;; and ;. If we put

Jjir g
R— < Ty T )
- )
Tji Tjj

then, in the real case, it is usual to choose R;; so that

%)

R( c i), c=cosf, s=sinb. (1)

—S

An exception is routine FO6FPF which applies the so-called symmetric rotation for which

R<§ i). (2)

The application of plane rotations is straightforward and needs no further elaboration, so further comment
is made only on the construction of plane rotations.

The most common use of plane rotations is to choose ¢ and s so that for given a and b,

(= 2)()=(5) ®

In such an application the matrix R is often termed a Givens rotation matrix. There are two approaches
to the construction of real Givens rotations in Chapter F06.

The BLAS routine FOBAAF (SROTG/DROTG), see Lawson et al. [7] and Dodson and Grimes [1],
computes ¢, s and d as
d=o(a®+b*)"/2,

[ a/d, d#0, [ b/d, d#0,
{1, d=0, S{o, d=0, (4)
[ signa, |a|>1b]
where o = { sign b, |a| < |B| °
The value z defined as
[ s, |s|] <core=0 (5)
= 1/e, 0<]c| <s

is also computed and this enables ¢ and s to be reconstructed from the single value z as

0, z=1 1, z=1
c=4 (1-22)Y2 |z]<1 s={ z |z| <1
1/z, 2] > 1 (1—cAHY2 2] >1

The other F06 routines for constructing Givens rotations are based on the computation of the tangent,
t = tanf. t is computed as

0, b=0

b/a, |b] < |a|.flmax,b # 0
sign(b/a). flmaz, |b] > |a|.flmaz
sign(b). fimazx, b#0,a=0

(6)
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where flmaz = 1/flmin and flmin is the small positive value returned by X02AMF. The values of ¢
and s are then computed or reconstructed via t as

1/(1+t3)Y2  Jeps < |t| <1/ /eps ct, veps < |t < 1/./eps
c=1¢ 1, [t| < \/eps s=14q t, [t] < \/eps (7)
1/1¢, [t| > 1//eps sign t, |t| > 1/\/eps

where eps is the machine precision. Note that c is always non-negative in this scheme and that the
same expressions are used in the initial computation of ¢ and s from a and b as in any subsequent recovery
of ¢ and s via t. This is the approach used by many of the NAG Fortran Library routines that require
plane rotations. d is computed simply as

d=c.a+s.b.

You need not be too concerned with the above detail, since routines are provided for setting up, recovering
and applying such rotations.

Another use of plane rotations is to choose ¢ and s so that for given z, y and 2

(=)o) )= s) ®)

In such an application the matrix R is often termed a Jacobi rotation matrix. The routine that generates
a Jacobi rotation (FO6BEF) first computes the tangent ¢ and then computes ¢ and s via ¢ as described
above for the Givens rotation.

2.2.2 Complex plane rotations

In the complex case a plane rotation matrix for the (¢, j) plane, R;; is a unitary matrix and, analogously
to the real case, it is usual to choose R;; so that

R=( 00 ) PR, )

S

where a denotes the complex conjugate of a. The BLAS (Lawson et al. [7]) do not contain a routine for
the generation of complex rotations, and so the routines in Chapter F06 are all based upon computing ¢
and s via t = b/a in an analogous manner to the real case. R can be chosen to have either c real, or s
real and there are routines for both cases.

When c is real then it is non-negative and the transformation

(= 2)6)=0) w

is such that if a is real then d is also real.

When s is real then the transformation

(= 2)6)=0) w

is such that if b is real then d is also real.

2.2.3 Elementary real (Householder) reflections

There are a number of routines in the chapter concerned with setting up and applying Householder
transformations. This section discusses the real case and the next section looks at the complex case. For
further background information see Golub and Van Loan [6].

A real elementary reflector, P, is a matrix of the form
P=T1—puu®, jpu'u=2, (12)

where p is a scalar and w is a vector, and P is both symmetric and orthogonal. In the routines in Chapter
F06, u is expressed in the form

z

u= < < > , (¢ ascalar (13)
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because in many applications ¢ and z are not contiguous elements. The usual use of elementary reflectors
is to choose p and wu so that for given o and x

P( @ ) = < g ), a and [ scalars. (14)

Such a transformation is often termed a Householder transformation. There are two choices of p and u
available in Chapter F06.

The first form of the Householder transformation is compatible with that used by LINPACK (see Dongarra
et al. [3]) and has

=1/ (15)
This choice makes ( satisfy

1<¢<2

The second form, and the form used by many of the NAG Fortran Library routines, has

pw=1 (16)
which makes
1<¢< Ve
In both cases the special setting
¢=0 (17)

is used by the routines to flag the case where P = I.

Note that while there are routines to apply an elementary reflector to a vector, there are no routines
available in Chapter F06 to apply an elementary reflector to a matrix. This is because such
transformations can readily and efficiently be achieved by calls to the matrix-vector Level 2 BLAS
routines. For example, to form PA for a given matrix

PA =(I - puwu™)A = A~ puu’ A

=A—pub’, b= AT, (18)

and so we can call a matrix-vector product routine to form b = ATw and then call a rank-one update
routine to form (A — pub®). Of course, we must skip the transformation when ¢ has been set to zero.

2.2.4 Elementary complex (Householder) reflections
A complex elementary reflector, P, is a matrix of the form
P=1—puut, jpufu=2, preal,

where u! denotes the complex conjugate of u”, and P is both Hermitian and unitary. For convenience
in a number of applications this definition can be generalized slightly by allowing u to be complex and
so defining the generalized elementary reflector as

P=1—puu®, |pPuu=p+p (19)

for which P is still unitary, but is no longer Hermitian.

The F06 routines choose p and ¢ so that
Re(s) =1, Im(¢) =0 (20)

and this reduces to (12) with the choice (16) when p and w are real. This choice is used because p and
u can now be chosen so that in the Householder transformation (14) we can make

and, as in the real case,
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Rather than returning p and ¢ as separate parameters the F06 routines return the single complex value
0 defined as

0=C+iIm(p), i=+v—1.
Obviously ¢ and p can be recovered as

¢ =Re(0), p=14i.Im(6).
The special setting

0=0
is used to flag the case where P = I, and
Re(d) <0, Im(f)#0

is used to flag the case where

P = ( g ? >, ~ a scalar (21)

and in this case 6 actually contains the value of 7. Notice that with both (18) and (21) we merely have
to supply 0 rather than 6 in order to represent PX.

3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users’ Note for your implementation to check that a routine is available.

This section lists the routines in each of the categories Level-0 (scalar), Level-1 (vector), Level-2 (matrix-
vector and matrix) and Level-3 (matrix-matrix). In each case a separate sub-section is given for the
routines that meet the specification of the BLAS and for the other F06 routines. For routines that meet
the specification of the BLAS, the corresponding BLAS name is indicated in brackets; in single precision
implementations the first of the names in the brackets is the appropriate name and in double precision
implementations it is the second of the names that is appropriate.

Within each section routines are listed in alphabetic order of the fifth character in the routine name, so
that corresponding real and complex routines may have adjacent entries.

3.1 The Level-0 Scalar Routines

The Level-0 routines just perform scalar operations such as generating a plane rotation.

3.1.1 The BLAS Level-0 scalar routine
FO6AAF (SROTG/DROTG) generates a real plane rotation

3.1.2 The F06 Level-0 scalar routines

FO6BAF generates a real plane rotation, storing the tangent

FO6CAF  generates a complex plane rotation, storing the tangent (real cosine)
FO6CBF  generates a complex plane rotation, storing the tangent (real sine)
FO6BCF  recovers the cosine and sine from a given real tangent

FO6CCF  recovers the cosine and sine from a given complex tangent (real cosine)
FO6CDF  recovers the cosine and sine from a given complex tangent (real sine)
FO6BEF generates a real Jacobi plane rotation

FO6BHF applies a real similarity rotation to a 2 x 2 symmetric matrix

FO6CHF applies a complex similarity rotation to a 2 x 2 Hermitian matrix
FO6BLF divides two real scalars, with an overflow flag

FO6CLF divides two complex scalars, with an overflow flag

FO6BMF calculates the Euclidean length of a vector following the use of routines FO6FJF or FO6KJF
FO6BNF  computes the value (a” + b2)1/2; a, b real

FO6BPF computes an eigenvalue of a 2 x 2 real symmetric matrix
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3.2 The Level-1 Vector Routines

The Level-1 routines perform operations on or between vectors, such as computing dot products and

Euclidean lengths.

3.2.1 The BLAS Level-1 vector and sparse vector routines

FOGEAF (SDOT/DDOT)
FO6GAF (CDOTU/ZDOTU)
FO6GBF (CDOTC/ZDOTC)
FOGECF (SAXPY/DAXPY)
FO6GCF (CAXPY/ZAXPY)
FOBEDF (SSCAL/DSCAL)
FO6GDF (CSCAL/ZSCAL)
F06JDF (CSSCAL/ZDSCAL)
FOGEFF (SCOPY/DCOPY)
FO6GFF (CCOPY/ZCOPY)
FOGEGF (SSWAP/DSWAP)
FO6GGF (CSWAP/ZSWAP)
FOGEJF (SNRM2/DNRM2)
F06JJF (SCNRM2/DZNRM2)
FOGEKF (SASUM/DASUM)
FO6JKF (SCASUM/DZASUM)
FO6JLF (ISAMAX/IDAMAX)
F06JMF (ICAMAX/IZAMAX)

FO6EPF (SROT/DROT)
FOGERF (SDOTI/DDOTI)
FO6GRF (CDOTUI/ZDOTUI)
FO6GSF (CDOTCI/ZDOTCI)
FOGETF (SAXPYI/DAXPYI)
FO6GTF (CAXPYI/ZAXPYT)
FO6EUF (SGTHR/DGTHR)
F06GUF (CGTHR/ZGTHR)
FOGEVF (SGTHRZ/DGTHRZ)
FO6GVF (CGTHRZ/ZGTHRZ)
FO6EWF (SSCTR/DSCTR)
FO6GWF (CSCTR/ZSCTR)
FOGEXF (SROTI/DROTT)

computes the dot product of two real vectors

computes the dot product of two complex vectors (unconjugated)
computes the dot product of two complex vectors (conjugated)
adds a scalar times a vector to another real vector

adds a scalar times a vector to another complex vector

multiplies a real vector by a scalar

multiplies a complex vector by a scalar

multiplies a complex vector by a real scalar

copies a real vector

copies a complex vector

swaps two real vectors

swaps two complex vectors

computes the Euclidean length of a real vector

computes the Euclidean length of a complex vector

sums the absolute values of the elements of a real vector

sums the absolute values of the elements of a complex vector
finds the index of the element of largest absolute value of a real vector

finds the index of the element of largest absolute value of a complex
vector

applies a real plane rotation

computes the dot product of two real sparse vectors

computes the dot product of two complex sparse vectors (unconjugated)
computes the dot product of two complex sparse vectors (conjugated)
adds a scalar times a sparse vector to another real sparse vector

adds a scalar times a sparse vector to another complex sparse vector
gathers a real sparse vector

gathers a complex sparse vector

gathers and sets to zero a real sparse vector

gathers and sets to zero a complex sparse vector

scatters a real sparse vector

scatters a complex sparse vector

applies a plane rotation to two real sparse vectors

3.2.2 The F06 Level-1 vector routines

FO6FAF  computes the cosine of the angle between two real vectors

FO6DBF loads a scalar into each element of an integer vector

FO6FBF loads a scalar into each element of a real vector

FO6HBF loads a scalar into each element of a complex vector

FO6FCF  multiplies a real vector by a diagonal matrix

FO6HCF multiplies a complex vector by a diagonal matrix
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FO6KCF multiplies a complex vector by a real diagonal matrix

FO6FDF multiplies a real vector by a scalar, preserving the input vector
FO6HDF multiplies a complex vector by a scalar, preserving the input vector
FO6KDF multiplies a complex vector by a real scalar, preserving the input vector
FO6DFF  copies an integer vector

FO6KFF copies a real vector to a complex vector

FO6FGF negates a real vector

FO6HGF negates a complex vector

FO6FJF  updates the Euclidean length of a real vector in scaled form
FO6KJF updates the Euclidean length of a complex vector in scaled form
FO6FKF finds the weighted Euclidean length of a real vector

FO6FLF  finds the elements of largest and smallest absolute value of a real vector
FO6KLF finds the last non-negligible element of a real vector

FO6FPF  applies a real symmetric plane rotation

FO6HPF applies a complex plane rotation

FO6KPF applies a real plane rotation to two complex vectors

FO6FQF  generates a sequence of real plane rotations

FO6HQF generates a sequence of complex plane rotations

FO6FRF  generates a real elementary reflection (NAG style)

FO6HRF generates a complex elementary reflection

FO6FSF  generates a real elementary reflection (LINPACK style)

FOGFTF applies a real elementary reflection (NAG style)

FO6HTF applies a complex elementary reflection

FO6FUF  applies a real elementary reflection (LINPACK style)

3.3 The Level-2 Matrix-vector and Matrix Routines

The Level-2 routines perform matrix-vector and matrix operations, such as forming the product between
a matrix and a vector, computing Frobenius norms and applying a sequence of plane rotations.

3.3.1 The BLAS Level-2 matrix-vector routines

FO6PAF (SGEMV/DGEMYV) computes a matrix-vector product; real general matrix

FO06SAF (CGEMV/ZGEMYV) computes a matrix-vector product; complex general matrix
FO6PBF (SGBMV/DGBMYV)  computes a matrix-vector product; real general band matrix
F06SBF (CGBMV/ZGBMYV) computes a matrix-vector product; complex general band matrix
FO6PCF (SSYMV/DSYMV) computes a matrix-vector product; real symmetric matrix

F06SCF (CHEMV/ZHEMYV) computes a matrix-vector product; complex Hermitian matrix
FO6PDF (SSBMV/DSBMV) computes a matrix-vector product; real symmetric band matrix
F06SDF (CHBMV/ZHBMYV) computes a matrix-vector product; complex Hermitian band matrix
FO6PEF (SSPMV/DSPMV) computes a matrix-vector product; real symmetric packed matrix
FO6SEF (CHPMV/ZHPMV) computes a matrix-vector product; complex Hermitian packed matrix
FO6PFF (STRMV/DTRMV) computes a matrix-vector product; real triangular matrix

FO6SFF (CTRMV/ZTRMV) computes a matrix-vector product; complex triangular matrix
FO6PGF (STBMV/DTBMV) computes a matrix-vector product; real triangular band matrix
F06SGF (CTBMV/ZTBMV) computes a matrix-vector product; complex triangular band matrix
FO6PHF (STPMV/DTPMV) computes a matrix-vector product; real triangular packed matrix
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FO6SHF (CTPMV/ZTPMYV)
FO6PJF (STRSV/DTRSV)
F06SJF (CTRSV/ZTRSV)
FO6PKF (STBSV/DTBSV)
FO6SKF (CTBSV/ZTBSV)
FO6PLF (STPSV/DTPSV)
FO6SLF (CTPSV/ZTPSV)

FO6PMF (SGER/DGER)
FO6SMF (CGERU/ZGERU)

FO6SNF (CGERC/ZGERC)

FO6PPF (SSYR/DSYR)
F06SPF (CHER/ZHER)
FO6PQF (SSPR/DSPR)
F06SQF (CHPR/ZHPR)
FO6PRF (SSYR2/DSYR2)
FO6SRF (CHER2/ZHER?2)
FO6PSF (SSPR2/DSPR2)
F06SSF (CHPR2/ZHPR2)

Introduction — F06

computes a matrix-vector product; complex triangular packed matrix
solves a system of equations; real triangular coefficient matrix

solves a system of equations; complex triangular coefficient matrix
solves a system of equations; real triangular band coefficient matrix
solves a system of equations; complex triangular band coefficient matrix
solves a system of equations; real triangular packed coefficient matrix

solves a system of equations; complex triangular packed coefficient
matrix

performs a rank-one update; real general matrix

performs a rank-one update; complex general matrix (unconjugated
vector)

performs a rank-one update; complex general matrix (conjugated
vector)

performs a rank-one update; real symmetric matrix

performs a rank-one update; complex Hermitian matrix
performs a rank-one update; real symmetric packed matrix
performs a rank-one update; complex Hermitian packed matrix
performs a rank-two update; real symmetric matrix

performs a rank-two update; complex Hermitian matrix
performs a rank-two update; real symmetric packed matrix

performs a rank-two update; complex Hermitian packed matrix

3.3.2 The Level-2 matrix routines

FO6QFF
FO6TFF

copies a real general or trapezoidal matrix

copies a complex general or trapezoidal matrix

FO6QHF loads a scalar into each element of a real general or trapezoidal matrix; a different scalar may
be loaded into the diagonal elements

FO6THF

loads a scalar into each element of a complex general or trapezoidal matrix; a different scalar

may be loaded into the diagonal elements

FO6QJF

matrix

FO6VJF

general matrix

applies a sequence of permutation matrices, represented by an integer array, to a real general

applies a sequence of permutation matrices, represented by an integer array, to a complex

FO6QKF applies a sequence of permutation matrices, represented by a real array, to a real general

matrix

FO6VKF applies a sequence of permutation matrices, represented by a real array, to a complex general

matrix

FO6QMF applies a sequence of plane rotations, as a similarity transformation, to a real symmetric

matrix

FO6TMF applies a sequence of plane rotations, as a similarity transformation, to a complex Hermitian

matrix

FO6QPF
form

FO6TPF
form

applies a rank-one update to a real upper triangular matrix, maintaining upper triangular

applies a rank-one update to a complex upper triangular matrix, maintaining upper triangular

FO6QQF performs a QR factorization of a real upper triangular matrix augmented by an additional full

row
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FO6TQF

FO6QRF

FO6TRF

FO6QSF

FO6TSF

FO6QTF

FO6TTF

FO6QVF

FO6TVF

FO6QWF

FO6TWF

FO6QXF

FO6TXF

FO6TYF

FO6VXF

FO6RAF
FO6UAF
FO6RBF
FO6UBF
FO6RCF
FO6UCF
FO6RDF

FO6UDF

FO6REF
FO6UEF
FO6RJF
FO6UJF

FO6RKF

F06.10

performs a QR factorization of a complex upper triangular matrix augmented by an additional
full row

applies a sequence of plane rotations, from either the left or the right, to reduce a real upper
Hessenberg matrix to upper triangular form

applies a sequence of plane rotations, from either the left or the right, to reduce a complex
upper Hessenberg matrix to upper triangular form

applies a sequence of plane rotations, from either the left or the right, to reduce a real upper
spiked matrix to upper triangular form

applies a sequence of plane rotations, from either the left or the right, to reduce a complex
upper spiked matrix to upper triangular form

applies a given sequence of plane rotations, from either the left or the right, to a real upper
triangular matrix and reduces the resulting matrix back to upper triangular form by applying
plane rotations from the other side

applies a given sequence of plane rotations, from either the left or the right, to a complex
upper triangular matrix and reduces the resulting matrix back to upper triangular form by
applying plane rotations from the other side

applies a given sequence of plane rotations, from either the left or the right, to a real upper
triangular matrix to give an upper Hessenberg matrix

applies a given sequence of plane rotations, from either the left or the right, to a complex
upper triangular matrix to give an upper Hessenberg matrix

applies a given sequence of plane rotations, from either the left or the right, to a real upper
triangular matrix to give an upper spiked matrix

applies a given sequence of plane rotations, from either the left or the right, to a complex
upper triangular matrix to give an upper spiked matrix

applies a given sequence of plane rotations, from either the left or the right, to a real general
matrix

applies a given sequence of plane rotations with real cosines, from either the left or the right,
to a complex general matrix

applies a given sequence of plane rotations with real sines, from either the left or the right, to
a complex general matrix

applies a given sequence of real plane rotations, from either the left or the right, to a complex
general matrix

computes a norm, or the element of largest absolute value of a real general matrix
computes a norm, or the element of largest absolute value of a complex general matrix
computes a norm, or the element of largest absolute value of a real band matrix
computes a norm, or the element of largest absolute value of a complex band matrix
computes a norm, or the element of largest absolute value of a real symmetric matrix
computes a norm, or the element of largest absolute value of a complex Hermitian matrix

computes a norm, or the element of largest absolute value of a real symmetric matrix stored
in packed form

computes a norm, or the element of largest absolute value of a complex Hermitian matrix
stored in packed form

computes a norm, or the element of largest absolute value of a real symmetric band matrix
computes a norm, or the element of largest absolute value of a complex Hermitian band matrix
computes a norm, or the element of largest absolute value of a real general trapezoidal matrix

computes a norm, or the element of largest absolute value of a complex general trapezoidal
matrix

computes a norm, or the element of largest absolute value of a real triangular matrix stored
in packed form
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FO6UKF computes a norm, or the element of largest absolute value of a complex triangular matrix
stored in packed form

FO6RLF computes a norm, or the element of largest absolute value of a real triangular band matrix
FO6ULF computes a norm, or the element of largest absolute value of a complex triangular band matrix
FO6RMF computes a norm, or the element of largest absolute value of a real Hessenberg matrix
FO6UMF computes a norm, or the element of largest absolute value of a complex Hessenberg matrix
FO6UFF computes a norm, or the element of largest absolute value of a complex symmetric matrix

FO6UGF computes a norm, or the element of largest absolute value of a complex symmetric matrix
stored in packed form

FO6UHF computes a norm, or the element of largest absolute value of a complex symmetric band matrix

3.4 The Level-3 Matrix-matrix Routines

The Level-3 routines perform matrix-matrix operations, such as forming the product of two matrices.

3.4.1 The BLAS Level-3 matrix-matrix routines

FO6YAF (SGEMM/DGEMM)  computes a matrix-matrix product; two real rectangular matrices
FO06ZAF (CGEMM/ZGEMM)  computes a matrix-matrix product; two complex rectangular matrices

FO6YCF (SSYMM/DSYMM) computes a matrix-matrix product; one real symmetric matrix, one real
rectangular matrix

F06ZCF (CHEMM/ZHEMM)  computes a matrix-matrix product; one complex Hermitian matrix, one
complex rectangular matrix

FO6YFF (STRMM/DTRMM)  computes a matrix-matrix product; one real triangular matrix, one real
rectangular matrix

FO6ZFF (CTRMM/ZTRMM)  computes a marix-matrix product; one complex triangular matrix, one
complex rectangular matrix

FO6YJF (STRSM/DTRSM) solves a system of equations with multiple right-hand sides, real
triangular coefficient matrix

F06ZJF (CTRSM/ZTRSM) solves a system of equations with multiple right-hand sides, complex
triangular coefficient matrix

FO6YPF (SSYRK/DSYRK) performs a rank-k update of a real symmetric matrix
F06ZPF (CHERK/ZHERK) performs a rank-k update of a complex hermitian matrix
FO6YRF (SSYR2K/DSYR2K) performs a rank-2k update of a real symmetric matrix
FO06ZRF (CHER2K/ZHER2K) performs a rank-2k update of a complex Hermitian matrix

FO6ZTF (CSYMM/ZSYMM) computes a matrix-matrix product: one complex symmetric matrix,
one complex rectangular matrix

F06ZUF (CSYRK/ZSYRK) performs a rank-k update of a complex symmetric matrix
FO6ZWF (CSYR2K/ZSYR2K) performs a rank-2k update of a complex symmetric matrix

4 Description of the F06 Routines

In this section we describe the purpose of each routine and give information on the parameter lists, where
appropriate indicating their general nature. Usually the association between the routine arguments and
the mathematical variables is obvious and in such cases a description of the argument is omitted.

Within each section, the parameter lists for all routines are presented, followed by the purpose of the
routines and information on the parameter lists.

For those routines that meet the specification of the BLAS, the parameter lists indicate the single precision
BLAS name, but this should be substituted by the double precision BLAS name in double precision
implementations (see Sections 3.1-3.4).

Within each section routines are listed in alphabetic order of the fifth character in the routine name, so
that corresponding real and complex routines may have adjacent entries.
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4.1 The Level-0 Scalar Routines

The scalar routines have no array arguments.

4.1.1 The BLAS Level-0 scalar routine

SUBROUTINE FO6AAF ( A,B,
ENTRY srotg ( A,B,
real A,B,

c,s)
C,8)
c,S

F06 — Linear Algebra Support Routines

FO6AAF generates the parameters ¢ and s of a Givens rotation as defined by equations (4) and (5), from
given a and b. On exit, A is overwritten by d and B is overwritten by z.

4.1.2 The F06 scalar routines

SUBROUTINE FO6BAF ( A,B,
real A,B,
SUBROUTINE FO6CAF ( A,B,
complex A,B,
real
SUBROUTINE FO6CBF ( A,B,
complex A,B,
real
SUBROUTINE FO6BCF ( T,
real T,
SUBROUTINE FO6CCF ( T,
complex T,
real
SUBROUTINE FO6CDF ( T,
complex T,
real
SUBROUTINE FO6BEF ( JOB,
CHARACTER*1 JOB
real
SUBROUTINE FO6BHF (
real
SUBROUTINE FO6CHF (
complex
real
real FUNCTION FO6BLF ( A,B,
real A,B
LOGICAL
COTnIﬂea:FUNCTIDN FO6CLF ( A,B,
complex A,B
LOGICAL
real FUNCTION FO6BMF ( SCAL
real SCAL
real FUNCTION FO6BNF (A,B
real A,B
real FUNCTION FO6BPF ( X,Y,
real XY,
F06.12

C,8)
C

S
X,Y,Z2,C,8 )
X,v,Z2,C,S

X,Y,Z,C,S )
X,v,Z2,C,S

X,Y,Z,C,8 )

X,Y,Z, S
C

FAIL )

FAIL

FAIL )

FAIL

E,SsSQ )
E,SSQ

)

Z)
Z
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F06BAF, FO6CAF and FO6CBF generate the parameters ¢ and s of a Givens rotation as defined by
equations (6), (7) and their complex equivalents, from given a and b. On exit, A is overwritten by d and
B is overwritten by t.

F06BCF, FO6CCF and FO6CDF recover the parameters ¢ and s of a plane rotation from a given value of
t.

FO06BEF generates the parameters ¢ and s of a Jacobi rotation from given z, y and z (see equation (8)).
The input parameter JOB controls the choice of rotation as follows:

JOB = 'B’, then ¢ > 1/\/5,

JOB ='S’, then 0 < ¢ < 1/\/5,

JOB =M, then |a| > |b|.

On exit, a and b are overwritten on X and Z, and ¢ is overwritten on Y.

FO6BHF and FO6CHF apply a similarity plane rotation to a two by two symmetric or Hermitian matrix
defined by z, y and z. X, Y and Z are overwritten by the transformed elements.

F06BLF and FO6CLF return the value a/b, unless overflow would occur. If overflow would occur then the
value zero is returned when a = 0 and a value big, defined as follows, is returned otherwise. For FO6BLF
big is defined as

big = flmax.sign(a/b)

and for FO6CLF big is defined as
big = flmazx.(sign(Re(a/b)) + i.sign(Im(a/b))),

where flmax is the reciprocal of the value returned by X02AMF and sign(a/b) is taken as sign(a) when
b = 0. The argument FAIL is returned as false when overflow would not occur and is returned as true
otherwise.

FO06BMF returns the value scale. /sumsq. This routine is intended to be used following either of the
routines FO6FJF or FO6KJF.

FO6BNF returns the value (a? + b%)'/2, for given a and b.

FO06BPF returns an eigenvalue of a two by two symmetric matrix. The eigenvalue A is given by

A=z —y/(f +sign(f).(1+ f3)'?), where f = (v — 2)/(2y).

When y = 0 then A = z.

4.2 The Level-1 Vector Routines

The vector routines all have one or more one-dimensional arrays as arguments, each representing a vector.

In the non-sparse case the length of each vector, n, is represented by the argument N, and the routines
may be called with non-positive values of N, in which case the routine returns immediately except for
the functions, which set the function value to zero before returning.

In addition to the argument N, each array argument is also associated with an increment argument that
immediately follows the array argument, and whose name consists of the three characters INC, followed
by the name of the array. For example, a vector  will be represented by the two arguments X, INCX.
The increment argument is the spacing (stride) in the array for which the elements of the vector occur.
For instance, if INCX=2, then the elements of z are in locations X(1),X(3),...,X(2%*N—1) of the array X
and the intermediate locations X(2),X(4),...,X(2«N—2) are not referenced.

Thus when INCX >0, the vector element x, is in the array element X(14(¢ — 1)*INCX). When INCX
< 0 the elements are stored in the reverse order so that the vector element z; is in the array element
X(1 — (n — i) * INCX) and hence, in particular, the element z,, is in X(1). The declared length of the
array X in the calling (sub)program must be at least (1 + (N — 1) * [INCX]).

Non-positive increments are permitted only for those routines that have more than one array argument.
While zero increments are formally permitted for such routines, their use in Chapter FO06 is strongly
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discouraged since the effect may be implementation dependent. There will usually be an alternative
routine, with a simplified parameter list, to achieve the required purpose.

In the sparse case the routines are all concerned with operations on two sparse n element vectors x and y.
The vector x is stored in a dense (compressed) one-dimensional array X containing only the interesting
(usually non-zero) elements of x, while y is stored in full uncompressed form in an n element array Y. The
vector x is represented by the three arguments NZ, X and INDX, where NZ is the number of interesting
elements of x and INDX is a one-dimensional (index) array such that

2(INDX(d)) = X(i), i=1,2,...,NZ.

The vector y is represented only by the argument Y; no increment arguments are included.

Non-positive values of NZ are permitted, in which case the routine returns immediately except for
functions, which set the function value to zero before returning. For those routines where Y is an output
argument the values in the array INDX must be distinct; violating this condition may yield incorrect
results.

4.2.1 The BLAS Level-1 vector routines

real FUNCTION FOBEAF (N, X,INCX,Y,INCY )
real sdot

ENTRY sdot (N, X,INCX,Y,INCY )
INTEGER N, INCX,INCY
real X)), Y(x)
complex FUNCTION FOBGAF (N, X,INCX,Y,INCY )
complex cdotu

ENTRY cdotu (N, X,INCX,Y,INCY )
INTEGER N, INCX, INCY
complex X(G), Y(*)
complex FUNCTION FO6GBF (N, X,INCX,Y,INCY )
complex cdotc

ENTRY cdotc (N, X,INCX,Y,INCY )
INTEGER N, INCX, INCY
complex X(G), Y(*)
SUBROUTINE FOBECF ( N,ALPHA, X,INCX,Y,INCY )
ENTRY saxpy ( N,ALPHA, X,INCX,Y,INCY )
INTEGER N, INCX, INCY
real ALPHA, X(*), Y(x)
SUBROUTINE FOBGCF ( N,ALPHA, X,INCX,Y,INCY )
ENTRY caxpy ( N,ALPHA, X,INCX,Y,INCY )
INTEGER N, INCX, INCY
complex ALPHA, X(*), Y(x)
SUBROUTINE FOBEDF ( N,ALPHA, X,INCX )

ENTRY sscal ( N,ALPHA, X,INCX )
INTEGER N, INCX

real ALPHA, X(*)
SUBROUTINE FOBGDF ( N,ALPHA, X,INCX )

ENTRY cscal ( N,ALPHA, X,INCX )
INTEGER N, INCX
complex ALPHA, X(*)
SUBROUTINE FOBJDF ( N,ALPHA, X,INCX )

ENTRY csscal ( N,ALPHA, X,INCX )
INTEGER N, INCX

real ALPHA

complex X(x)
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SUBROUTINE
ENTRY
INTEGER
real

SUBROUTINE
ENTRY
INTEGER
complex

SUBROUTINE
ENTRY
INTEGER
real

SUBROUTINE
ENTRY
INTEGER
complex

real FUNCTION
real

ENTRY

INTEGER

real

real FUNCTION
real

ENTRY

INTEGER
complex

real FUNCTION
real

ENTRY

INTEGER

real

real FUNCTION
real

ENTRY

INTEGER
complex

INTEGER FUNCTION

INTEGER
ENTRY
INTEGER
real

INTEGER FUNCTION

INTEGER
ENTRY
INTEGER
complex

SUBROUTINE
ENTRY
INTEGER
real
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FO6EFF
scopy

FO6GFF
ccopy

FOBEGF
sswap

FO6GGF
cswap

FOBEJF
snrmz
snrmza

FO6JJF
scnrmz2
secnrm2

FOBEKF
sasum
sasum

FO6JKF
scasum
scasum

FO6JLF
isamax
isamax

FO6JMF
tcamax
icamax

FOGEPF
srot

X,INCX,Y,INCY

X,INCX,Y,INCY
INCX, INCY

X(%), Y(x)

X,INCX,Y,INCY

X,INCX,Y,INCY
INCX, INCY

X(*), Y(*)

X,INCX,Y,INCY

X,INCX,Y,INCY
INCX, INCY

X(%), Y(x)

X,INCX,Y,INCY

X,INCX,Y,INCY
INCX, INCY

X(%), Y(x)

X,INCX )
X,INCX )
INCX

X(%)
X,INCX )
X,INCX )
INC